
1 Introduction

1.1 Overview

The USB interface in the Dongle is used to connect to a PC. It is responsible
for creating a wireless audio link with Headset. The main functions include:

• Send: To transmit audio stream from PC to Headset.

• Receive: To receive control signal and voice audio from Headset to PC.

• OTA: To be used as VCOM device to transfer firmware file from PC to Headset that runs the OTA_Headset firmware at the
same time.

To give the audience a systematic view of Dongle in the LPC54114 BLE Audio System, this document describes the hardware
design and software architecture (top level design).

1.2 Reference documents

Table 1. References

Reference Definition

[LPC BLE Audio System] Introduction to LPC54114 BLE Audio System

[LPC Headset] LPC54114 USB Headset with NxH3670

[LPC OTA] OTA operation steps of LPC54114 BLE Audio System

2 System overview

2.1 Block diagram

The demo board is designed to support the Dongle and the Headset configurations.

Contents

1 Introduction.. 1

2 System overview....................................1

3 Components of USB Dongle..................6

4 Porting guide and demo introduction... 22

5 Conclusion... 29

AN12568
LPC54114 USB Dongle with NxH3670
Rev. 0 — September 2019 Application Note

Figure 1. Block diagram of LPC54114+ NxH3670 SDK board

As shown in Figure 1, SPI CONFIG, I2C CONFIG, and I2S CONFIG refer to the master selections of the communication interface.
For example, I2C CONFIG can select LPC54114 as I2S master in Dongle design while WM8904 as I2S master in Headset design.

The block diagram of LPC54114_Dongle is as shown in Figure 2.

NXP Semiconductors
System overview

LPC54114 USB Dongle with NxH3670, Rev. 0, September 2019
Application Note 2 / 30

Figure 2. Block diagram of Dongle configurations

As shown in Figure 2, the system contains:

• a Host Controller (LPC54114) that can run Dongle and OTA_Dongle demos.

• an NxH3670 that communicates with LPC54114 through SPI interface and transfers audio stream through the I2S interface.

2.2 Software architecture of USB Dongle

The software structure is as shown in Figure 3 and Figure 4.

NXP Semiconductors
System overview

LPC54114 USB Dongle with NxH3670, Rev. 0, September 2019
Application Note 3 / 30

Figure 3. Application framework architecture

Figure 4. Dongle application architecture

NXP Semiconductors
System overview

LPC54114 USB Dongle with NxH3670, Rev. 0, September 2019
Application Note 4 / 30

The architecture contains NVM service, USB service, Audio service, NxH service, and User Interface (UI) service. The main
functions include:

• NVM service: To read Partition Table.

• NxH control: To boot, start and transfer data with LPC54114 using SPI interface.

• User Interface: Buttons used to control the volume, play and pause.

• Audio service: To transmit audio data to I2S interface.

Without software intervention, the audio data can move from the ring buffer directly to the I2S interface using the
DMA channel.

 NOTE

• USB controller: USB is configured as an audio interface (UAC).

Figure 5 shows the audio transfer process.

Figure 5. Audio path

• : Playback (forward channel): The audio path from PC to the Headset.

— The USB host controller stack creates an interrupt when the transfer is completed. The software copies the transfer
data from the USB stack in a ring buffer, the input-buffer. This buffer queues audio data until a fraction of its buffer
capacity is filled, such as , 50%.

— The software enables a DMA channel connected to the I2S interface of the Host Controller. Then, the audio data can
move from the ring buffer directly to the I2S interface without software intervention.

— The BLE controller is connected with host controller via I2S. In turn, the I2S data is transferred over-the-air to the
Headset ‘s BLE controller.

— The BLE controller of Headset is connected with CODEC through I2S. In turn, the received I2S data is transferred to
CODEC without software intervention.

• : Record (backward channel): The audio path from the Headset to the PC.

— The audio is entered through LINE IN or DMIC interface to CODEC. CODEC is connected with the BLE controller via
I2S. In turn, the voice data is transferred to the BLE controller without software intervention (CODEC is I2S master
device).

NXP Semiconductors
System overview

LPC54114 USB Dongle with NxH3670, Rev. 0, September 2019
Application Note 5 / 30

— DMA channel transfers the received audio data from I2S-FIFORD (FIFO read data register) to a ring buffer.

— The software copies the transfer data from a ring buffer to the USB stack.

This document introduces the audio transfer process in the Dongle. For more information of Headset, refer to LPC54114 USB
Headset with NxH3670.

3 Components of USB Dongle

3.1 LPC54114

3.1.1 Host controller

The main features of LPC54114 USB Headset with NXH3670 are as below.

The LPC5411x is an Arm® Cortex®-M4 based microcontroller for embedded applications. These devices include:

• an optional Arm Cortex-M0+ coprocessor

• up to 192 KB of on-chip SRAM

• up to 256 KB on-chip flash

• Full-speed USB device interface

• a DMIC subsystem with dual-channel PDM microphone interface and I2S

• one 24-bit Multi-Rate Timer (MRT)

• eight flexible serial communication peripherals (each of which can be a USART, SPIs, or I2C interface)

3.1.2 Clocks

1. One reference crystal used on the board:

• 32 MHz crystal connected with the NxH3670.

2. I2S related clocks are as below:

• The bit clock of the I2S interface is derived from the master clock. The clock division is 16. bclk = mclk/16 =
24.576Mhz/16 = 1.536 Mhz.

• The Word Select (WS)/Left-Right Clock (LRCK) is 48 KHz.

After I2S peripheral is correctly configured, the clock information is as shown in Figure 6.

Figure 6. Clock information in audio transfer process

3.1.3 Pins connection information

Table 2 lists the connection information of LPC54114 and other components.

NXP Semiconductors
Components of USB Dongle

LPC54114 USB Dongle with NxH3670, Rev. 0, September 2019
Application Note 6 / 30

Table 2. Connection information

Function
Jumper

(LPC54114 Dongle)

Name

LPC54114_I2S_MAST
ER

Jumper

(NxH3670)

Name

BLE_I2S_SLAVE

I2S

(Connect with MCU)

J1_10 (PIN P1.7) I2S1_SDI J12_1 (I2S_CONFIG) BLE_SDO

J1_20 (PIN P0.5) I2S0_SDO J12_3 (I2S_CONFIG) BLE_SDI

J1_18 (PIN P0.6) I2S0_WS J12_5 (I2S_CONFIG) BLE_WS

J1_12 (PIN P1.8) I2S1_WS

J1_16 (PIN P0.7) I2S0_SCK J12_7 (I2S_CONFIG) BLE_SCK

J2_ 9 (PIN P1.12) I2S1_SCK

NXH Handshake J2_18 (PIN P1.4) BLE_SPIS_INTN J16_ 9 (BLE_SPI) SWM4 (- INTN)

J2_20 (PIN P1.3) BLE_SPIS_SRQ J16_11 (BLE_SPI) SRQ

SPI

J4_3 (PIN P0.13) BLE_SPIS_MISO J16_1 (BLE_SPI) SW0

J4_2 (PIN P0.12) BLE_SPIS_MOSI J16_3 (BLE_SPI) SW1

J4_4 (PIN P0.11) BLE_SPIS_SCLK J16_5 (BLE_SPI) SW2

J4_7 (PIN P0. 4) BLE_SPIS_SSN J16_7 (BLE_SPI) SW3

NXH Reset J4_8 (PIN P0.22) BLE_RESETN J20_ (BLE_SWD) POR_RESETN

Figure 7 shows the current demo, using LPCXpresso54114 board and NxH3670 board with extra jumper cables.

Figure 7. LPC Dongle hardware design

NXP Semiconductors
Components of USB Dongle

LPC54114 USB Dongle with NxH3670, Rev. 0, September 2019
Application Note 7 / 30

3.1.4 Schematic

• Audio transfer

— I2S

Figure 8. I2S interface connection

In the Dongle, the host controller (LPC54114) transfers data directly to NxH3670 via I2S, so to configure CODEC, the
I2S peripheral is required to be initialized instead of I2C peripheral.

• NxH3670

— NxH handshake

Figure 9. Handshake pins (SRQ and INTN) connection

— SPI

NXP Semiconductors
Components of USB Dongle

LPC54114 USB Dongle with NxH3670, Rev. 0, September 2019
Application Note 8 / 30

Figure 10. SPI interface connection

— Power On Reset (POR)

Figure 11. POR pins connection

3.1.5 Pins configurations

• SPI

— Interface: SPI3.

— Pins: CS (P0.4), SCK (P0.11), MISO (P0.12), MOSI (P0.13)

— Polarity: Active-high SPI clock (idles low).

— Phase: First edge on SPSCK occurs at the middle of the first cycle of a data transfer.

— Baud rate: Configured to be 8000000u for SPI.

• I2S pin

— I2S_TXD (P0.5)

— I2S_RXD (P1.13)

— I2S_BCLK (P0.7): SCLK

— I2S_FS (P0.6): WS/LRCK

• NxH3670 Pin

— INIT (P1.4): Configured as digital input.

— SRQ (P1.3): Configured as digital output.

NXP Semiconductors
Components of USB Dongle

LPC54114 USB Dongle with NxH3670, Rev. 0, September 2019
Application Note 9 / 30

— POR (P0.22): Configured as digital output.

3.2 NxH3670

Figure 12 shows the process of connection between Dongle and Headset.

1. Downloading and starting NxH3670 images

• In the Boot step, the host controller loads images from flash/eeprom to NxH3670 through the SPI interface.

• In the starting step, the host controller handshakes with NxH3670. Then the software registers an event table with
the HCI layer used to handle events sent from NxH3670.

2. Pairing

• The NxH3670 on Dongle and Headset board pair with each other. For example, Dongle retrieves PD from Headset.

3. Connectiong

When the NxH3670 on Dongle and Headset board successfully connect with each other, they start to transfer data to each
other. For example, Dongle senda audio stream to Headset.

NXP Semiconductors
Components of USB Dongle

LPC54114 USB Dongle with NxH3670, Rev. 0, September 2019
Application Note 10 / 30

Figure 12. NxH3670 process

3.2.1 Boot

3.2.1.1 NxH3670UK bootloader

The most important task of the bootloader is to prepare the NxH3670UK to start a user application. The typical bootloader lifecycle
is:

1. Configure the device.

2. Load the memories. By default, the NxH3670UK starts up in the host-assisted mode with the SPI slave interface.

3. Enter the active mode.

3.2.1.2 Partition table

Since the NxH3670 BLE radio cannot store data persistent, the Flash memory of the Host Controller is used for storage.

NXP Semiconductors
Components of USB Dongle

LPC54114 USB Dongle with NxH3670, Rev. 0, September 2019
Application Note 11 / 30

The reference application can split the memory into logical partitions.

The data, either firmware binary data or application configuration data within such a partition, can be read or written.

Figure 13. Partition table/layout of release mode of Dongle

As shown in Figure 13, the partition_id 0 contains four images, kl_app, nxh_app, rfmac and cf. For example, the offset of nxh_app
is 0x20810, which indicates to download the images to 0x21400 (0xbf0+0x20810).

NXP Semiconductors
Components of USB Dongle

LPC54114 USB Dongle with NxH3670, Rev. 0, September 2019
Application Note 12 / 30

Users can design their own partition table on their needs, but the following should be mentioned.

• To keep Partition1: app_data to be the first partition in the memory, in the layout_release_sdk.yml file, put in the order
of app_data, app, ….

• Make sure that the value (base_address of Partition + size of partition0) is smaller than base_address of the Partition1.

3.2.1.3 NVM

Non-Volatile Memory (NVM) is a memory technology that maintains stored data during power-off. The flash array is an NVM
using NOR-type flash memory technology.

The NVM of LPC54114 can be used to save firmware of NxH3670. Taking Dongle as an example, users need to pre-store
phGamingTx.ihex.eep, phStereoInterleavedAsrcTx.eep, and rfmac.eep in the NVM, which will take up about 120 k.

3.2.1.4 EEP

3.2.1.4.1 Definition

For safety reasons, the NVM-image contains CRCs and signatures at different levels (i.e. block level and overall). This allows
the detection of corrupt images and the abortion of the loading and the execution of potentially harmful instructions.

Figure 14. Format of EEP file

All fields listed in Figure 14 are stored in the little-endian format. A valid image must start with a 32-bit signature,
0xBEBAFECA. After this signature, one or more images can be present. Each image starts with a header.

NXP Semiconductors
Components of USB Dongle

LPC54114 USB Dongle with NxH3670, Rev. 0, September 2019
Application Note 13 / 30

Figure 15. Analysis of phGamingTx.ihex.eep - 1

In Figure 15, the value of Image Length is 16287 and of Type ID is 0. It indicates that the host controller sends 65148 (16287 ×
4) bytes to NxH3670 through SPI.

Figure 16. Analysis of phGamingTx.ihex.eep - 2

In Figure 16, the value of Image Length is 284 and of Type ID is 0. It indicates that the host controller sends 1136 (284 × 4) bytes
to NxH3670 through SPI.

3.2.1.4.2 Downloading .EEF file to LPC54114

This document provides two methods to download .EEF files to LPC54114.

1. Transform .EEP files to .HEX buffer.

• Winhex

• __attribute__((section(".ARM.__at_address")))

With this method, users can store NxH3670 relevant firmware as a buffer, as OTA process only re-writes the application
of the host controller instead of NxH3670.

2. Transform .BIN files to .EEP files.

• SDK packet contains a tool called to_eep.cmd in release, as shown in Figure 17.

NXP Semiconductors
Components of USB Dongle

LPC54114 USB Dongle with NxH3670, Rev. 0, September 2019
Application Note 14 / 30

Figure 17. to_eep.cmd in packet

• Input: to_eep.cmd -i spi_dma_b2b_transfer_master.bin -o spi_dma_b2b_transfer_master.eep

Figure 18. Command string in to_eep.cmd

• As shown in Figure 19 and Figure 20, the bin file was packet with SIGNATURE and HEADER.

Figure 19. BIN file

Figure 20. EEP file

With this method, users can store the application of the host controller instead of NxH3670 firmware. For example, user
can transfer the .BIN file of application to .EEP.BIN file with CRCs and signatures, which is useful in OTA process.

3.2.1.5 NxH3670 host interface: SPI

3.2.1.5.1 SPI bus

For NxH3670, the boot loader configures the SPI slave interface and assumes the host to be SPI master. The configurations of
SPI slave operation mode include:

• SPI slave 4-wire mode connection: MOSI, MISO, SCK, SSEL

• SPI slave max speed communication: 8 MHz

• SPI slave mode: mode0 (CPHA=0, CPOL=0)

• Operating modes: clock and phase selection

SPI interfaces allow configuration of clock phase and polarity. These are sometimes referred to as numbered SPI modes, as
described in Table 3 and shown in Figure 21. CPOL and CPHA are configured by bits in the CFG register (LPC54114).

NXP Semiconductors
Components of USB Dongle

LPC54114 USB Dongle with NxH3670, Rev. 0, September 2019
Application Note 15 / 30

Table 3. SPI mode summary

CPOL CPHA SPI mode Description SCK rest state SCK data
change edge

SCK data
sample edge

0 0 0 The SPI captures serial data on
the first clock transition of the
transfer (when the clock changes
away from the rest state). Data is
changed on the following edge.

Low Falling Rising

0 1 1 The SPI changes serial data on
the first clock transition of the
transfer (when the clock changes
away from the rest state). Data is
captured on the following edge.

Low Rising Falling

1 0 2 Same as mode 0 with SCK
inverted.

High Rising Falling

1 1 3 Same as mode 1 with SCK
inverted.

High Falling Rising

Figure 21. Basic SPI operating mode: mode0

Figure 22. mode0 example of logic analyzer

3.2.1.5.2 SPI flow control

In the BLE Audio System, the format of SPI transfer is as shown in Figure 23.

NXP Semiconductors
Components of USB Dongle

LPC54114 USB Dongle with NxH3670, Rev. 0, September 2019
Application Note 16 / 30

Figure 23. SPI slave – Transfer format

Table 4. SPI slave – Supported commands

Command Opcode Description

Write 0b010xxxxx To write payload to NxH3670 SPI slave.

Read 0b110xxxxx To read pending data from NxH3670
SPI slave.

Read status 0b101xxxxx To read status byte.

Read extended status 0b111xxxxx To read extended status byte.

For example, in the software design, #define SPI_WRITE_CMD (0x40u) is used to define the Write command. Figure 24 shows
the signal of Logic analyzer.

Figure 24. Transfer format

3.2.1.6 Host Controller Interface (HCI)

3.2.1.6.1 HCI command format

The HCI command is embedded in the SPI payload field of the SPI write command (see SPI flow control). The beginning of the
HCI command must be aligned to the beginning of the SPI transfer.

All commands and events are formatted as Bluetooth HCI Vendor Specific commands.

NXP Semiconductors
Components of USB Dongle

LPC54114 USB Dongle with NxH3670, Rev. 0, September 2019
Application Note 17 / 30

Figure 25. HCI command format

A command starts with:

• The command packet byte with a fixed value, 0x01.

• A unique 16-bit opcode which identifies the HCI command.

• Parameter Length holds the length of the parameters that follow (in byte). Zero value is allowed.

• The actual parameters (optional). These actual parameters include 8-bit, 16- bit, 24-bit, and so on. It is the command
processor that must interpret the byte sequence correctly.

In the commands, HCI opcodes and optional parameters are always LSB first.

The SPI slave - transfer format of logic analyzer is as shown in Figure 26.

Figure 26. SPI slave - Transfer format of logic analyzer

3.2.1.6.2 HCI event format

Results of commands are sent back as HCI formatted events. Whenever the HCI controller must send something back to the
host, it queues this event and the host retrieves this queued event.

The HCI event is embedded in the SPI payload field of the SPI read command.

Figure 27. HCI event format

The HCI event format of logic analyzer is as shown in Figure 28.

NXP Semiconductors
Components of USB Dongle

LPC54114 USB Dongle with NxH3670, Rev. 0, September 2019
Application Note 18 / 30

Figure 28. HCI event format of logic analyzer

3.2.1.6.3 HCI command transfer

Figure 29 shows a sequence of how an HCI command is sent to the NxH3670.

Figure 29. HCI command transfer - Read status

Before starting an SPI transfer, assert the SRQ line and wait for the confirmation on the awake/int signal. It is to check whether
the NxH3670 is awake and the SPI bus is available.

Although the host knows the NxH3670 is awake, it is required to use the SPI read-status-command to check whether the NxH3670
is ready to accept new SPI data.

Figure 30. HCI command transfer - Write command

The signal changes, including SRQ, Awake/Int, CS, MOSI and MISO, are as shown in Figure 31.

NXP Semiconductors
Components of USB Dongle

LPC54114 USB Dongle with NxH3670, Rev. 0, September 2019
Application Note 19 / 30

Figure 31. Boot process of NxH3670

3.2.1.6.4 HCI event transfer

The NxH3670 uses a software queue to store multiple HCI events. If the SPI read buffer is empty, the earliest event is moved to
the SPI read buffer and the SPI pending data signal is asserted.

Figure 32. HCI event transfer - Read extended status

The NxH3670 indicates pending data by asserting the awake/int signal.The host can retrieve the extended status to check how
many data is pending. The SRQ signal is de-asserted and the awake/int is de-asserted soon after. As the actual pending data
has not been read, the awake/int signal is asserted again.

Figure 33. HCI event transfer - Read

The host knows how many bytes are pending and can initiate an SPI read command. The NxH3670 sends the serialized HCI
event back to the host.

The NxH3670 transfers only one HCI event at a time. If more HCI events are pending in the software queue, it moves the earliest
HCI event to the SPI buffer and starts the sequence as described above.

If the host does not read fast enough, HCI events may get lost due to buffer overflow.

NXP Semiconductors
Components of USB Dongle

LPC54114 USB Dongle with NxH3670, Rev. 0, September 2019
Application Note 20 / 30

3.2.2 Handshake

The SPI handshake protocol implements three logical signals by using two physical hardware signals.

3.2.2.1 Logical signals

1. Service request signal

This signal is used by the host to request services by the NxH3670. When detecting the signal, ithe NxH3670 asserts the
awake signal to indicate that it is ready to handle the service request.

2. Awake signal

This signal is used by the NxH3670 to indicate it is awake. The NxH3670 asserts the awake signal only when the SRQ
signal is asserted and the NxH3670 does not wake up every time.

3. Pending data signal

When the NxH3670 has pending data, it asserts this signal to the host.

3.2.2.2 Physical signals

As shown in Figure 34 and described in Table 5 , the three logical signals are mapped onto two physical signals to reduce required
pin count.

Figure 34. SPI handshake physical signals

Table 5. Physical to logical signal mapping

Logical signal SRQ physical signal AWAKE/INT physical signal

Service request signal Asserted Don’t care

Wake signal Asserted Asserted

Pending data signal Deasserted Asserted

The pending data signal maps to the INT physical signal.

 NOTE

The following scenarios may occur:

1. The host initiates an SPI transfer.

2. The NxH3670 requests an SPI transfer.

3. The host initiates and the NxH3670 request an SPI transfer simultaneously.

For an easier understanding about the process of handshake, Scenario 2 is taken as an example.

When the NxH3670 has pending data, it generates the sequence to report pending data, as shown in Figure 35.

1. The NxH3670 asserts the AWAKE/INT signal to indicate that it has pending data.

NXP Semiconductors
Components of USB Dongle

LPC54114 USB Dongle with NxH3670, Rev. 0, September 2019
Application Note 21 / 30

2. To retrieve the pending data, the host initiates an SPI transfer.

Figure 35. NxH3670 requested SPI transfer sequence

The NxH3670 stays awake as long as data is pending. The host must read the pending data as soon as possible to save power.

Figure 36. NxH3670 requested SPI transfer data

3.2.3 Start

A USB cable can be used to connect J5 (LPCXpresso54114) with PC to power or download firmware.

4 Porting guide and demo introduction

4.1 Framework

Two SDK-based files are required to be modified, framework_power and framework_timer.c. Other files independent of SDK
are not required be modified.

NXP Semiconductors
Porting guide and demo introduction

LPC54114 USB Dongle with NxH3670, Rev. 0, September 2019
Application Note 22 / 30

Figure 37 shows the different configurations between KL27 and LPC54114. Contents in red frame indicate the changed codes
to be modified according to actual design requirements without functional change.

Figure 37. Framework service porting

In framework_timer.c, LPC54114 uses Multi-Rate Timer (MRT) to provide timing (SW timer) for the system
while KL27 uses Low-Power Timer (LPTMR) to implement the same functionality.

 NOTE

Tips:

• Codes can be modified by following the original code instead of completely changed. For example:

LPC54114 KL27

static void StartHwTimer(uint32_t ticks)
{MRT_StartTimer(MRT0, kMRT_Channel_0, ticks);}

static void StartHwTimer(uint32_t ticks)
{LPTMR_SetTimerPeriod(LPTMR_INSTANCE,
ticks);LPTMR_StartTimer(LPTMR_INSTANCE);}

4.2 NxH

Five MCU’s peripherals and SDK-based files are required to be modified, nxh_boot.c, nxh_ctrl.c, transport_ctrl_common.c,
transport_ctrl.c, and transport_spi.c.

Figure 38 shows the configuration differences between KL27 and LPC54114.

NXP Semiconductors
Porting guide and demo introduction

LPC54114 USB Dongle with NxH3670, Rev. 0, September 2019
Application Note 23 / 30

Figure 38. NxH service porting

In the NxH service, the followings need to be re-configured:

1. Digital output/input pin (nxh_boot.c, nxh_ctrl.c, transport_ctrl_common.c, and transport_ctrl.c)

Configure SRQ and POR_RESET pins as digital output function and INTN pin as input function, to complete the handshake
and transfer processes. Then test the boot-up and start processes.

• Reminder 1

The NxH3670’s INTN pin changes the level to inform MCU with status change during the process of Boot. This function
can be configured on MCU design.

For example, use the Pseudo code to introduce ProgramSpiAwakeInt.

KL27 LPC54114

CtrlCtxt->currentIntConfig = intConfig;

PORT_SetPinInterruptConfig(XX, XX, intConfig);

CtrlCtxt->currentIntConfig = intConfig;

/* Select pins & polarity for GINT0 */
GINT_ConfigPins(XX, XX, XX, intConfig);

• Reminder 2

— KL27 uses PORTC_PORTD_IRQHandler to call TRANSPORTCTRL_IrqHandler.

— LPC54114 uses GINT0_DriverIRQHandler to call TRANSPORTCTRL_IrqHandler.

NXP Semiconductors
Porting guide and demo introduction

LPC54114 USB Dongle with NxH3670, Rev. 0, September 2019
Application Note 24 / 30

Figure 39. BSP porting releted to NxH service

2. SPI (transport_spi.c)

As MCU communicates with NxH3670 through the SPI interface, the base address of SPI interface should ebe decided
first. Then, configure MOSI, MISO, SCK, CS pins based on SDK.

3. DMA (transport_spi.c)

In Audio Service, use API SPI_MasterTransferDMA to transfer the audio stream through the DMA channel and API
SPI_MasterTransferNonBlocking to communicate with NxH3670.

4.3 USB

Three MCU’s peripherals and SDK-based files are required to be modified, usb_device_dci.c, usb_osa_bm.c, and usb_ctrl.c.

Figure 40 shows the middleware configuration difference between KL27 and LPC54114.

Figure 40. USB middleware porting

Figure 41 shows the service configuration difference between KL27 and LPC54114 (VBUS is required to be confugured for USB
peripheral).

NXP Semiconductors
Porting guide and demo introduction

LPC54114 USB Dongle with NxH3670, Rev. 0, September 2019
Application Note 25 / 30

Figure 41. BSP porting related to USB service

• Reminder 1 (usb_device_config.h and usb_ctrl.c)

Modify USB configurations to port the demo from KL27 to LPC54114.

— void USB0_IRQHandler(void)

KL27 LPC54114

USB_DeviceKhciIsrFunction USB_DeviceLpcIp3511IsrFunction

NXP Semiconductors
Porting guide and demo introduction

LPC54114 USB Dongle with NxH3670, Rev. 0, September 2019
Application Note 26 / 30

— #define CONTROLLER_ID XXXX

KL27 LPC54114

kUSB_ControllerKhci0 kUSB_ControllerLpcIp3511Fs0

— irqNo

KL27 LPC54114

khciIrq[CONTROLLER_ID - kUSB_ControllerKhci0]; khciIrq[CONTROLLER_ID -
kUSB_ControllerLpcIp3511Fs0];

— #define USB_DEVICE_CONFIG_KHCI (1U)

KL27 LPC54114

#define USB_DEVICE_CONFIG_KHCI (1U) #define USB_DEVICE_CONFIG_KHCI (0U)

#define USB_DEVICE_CONFIG_EHCI (0U)

#define USB_DEVICE_CONFIG_LPCIP3511FS (1U)

4.4 Audio

Three MCU’s peripherals and SDK-based files are required to be modified, audio_rx.c, audio_tx.c, and dma_interface.c.
Other files in the audio are not required to be modified.

Figure 42 shows the configuration difference between KL27 and LPC54114.

Figure 42. Audio service porting

1. In audio_tx.c:

NXP Semiconductors
Porting guide and demo introduction

LPC54114 USB Dongle with NxH3670, Rev. 0, September 2019
Application Note 27 / 30

• KL27 uses DMA to transfer audio data from ring-buffer to Synchronous Audio Interface (SAI).

• LPC54114 uses DMA to transfer audio data from ring-buffer to FIFOWR Register of I2S.

2. In audio_rx.c:

• KL27 uses DMA to transfer audio data from Synchronous Audio Interface (SAI) to ring-buffer.

• LPC54114 uses DMA to transfer audio data from FIFORD Register of I2S to ring-buffer.

The I2S interface of LPC54114 is required to be configured to achieve the same function of KL27’s SAI.

3. In dma_interface:

• KL27 obtains SourceAddress and DestinationAddress using SDK API.

— Reminder 1

To liberate the task of MCU, KL27 uses a LinkDMA to re-configure DMA_Channel, which is used to transfer audio
data. The related code is audio_DMATxCallback.

The LinkDMA help to re-configure total number of transfers to be performed.

• LPC54114 do not provide such Register, so users can save SourceAddress and DestinationAddress as The global
variable.

— Reminder 2

Configure LPC54114’s XFERCFGn register (16-25 bits) of total number of transfers to be performed, to make
sure that DMA moves data continuously if ring-buffer is not empty.

4.5 NVM

One MCU’s peripherals and SDK-based file is required to be modified, nvm_controller.c. This file writes or reads Flash and is
called by nvm_mgr.c and nvm.c.

Figure 43 shows the configuration difference between KL27 and LPC54114.

Figure 43. Drive of NVM porting

• Reminder 1

The NVM.c service reads Partition table which contains the Flash location of different firmware. It is a necessary operation in
Over The Air (OTA) firmware update process, so user must make sure configure their Flash correctly on LPC54114 to perform
OTA or obtain the Partition table information.

The following lists items to be modified in the NVM_controller.c using pseudo codes.

1. Flash definition

KL27 LPC54114

#define SECTOR_SIZE_IN_BYTES (1024)

#define FLASH_SIZE (0x40000)

#define SECTOR_SIZE_IN_BYTES (32768)

#define FLASH_SIZE (0x40000)

NXP Semiconductors
Porting guide and demo introduction

LPC54114 USB Dongle with NxH3670, Rev. 0, September 2019
Application Note 28 / 30

KL27 LPC54114

#define ROUND_DOWN_TO_SECTOR_SIZE_MASK (0xFFFFFC00)

#define GET_OFFSET_IN_SECTOR_MASK (0x03FF)

#define NOTHING_CACHED (0xFFFFFFFF)

#define ROUND_DOWN_TO_SECTOR_SIZE_MASK (0xFFFF8000)

#define GET_OFFSET_IN_SECTOR_MASK (0x7FFF)

#define NOTHING_CACHED (0xFFFFFFFF)

2. static void EraseSector (uint32_t addr)

KL27 LPC54114

FLASH_Erase

FLASH_VerifyErase

FLASHIAP_PrepareSectorForWrite

FLASHIAP_EraseSector

FLASHIAP_BlankCheckSector

One sector (32kb) is erased instead of one page (256 bytes).

 NOTE

3. static void ProgramSector (uint8_t *data, uint32_t len, and uint32_t addr)

KL27 LPC54114

FLASH_Program

FLASH_VerifyProgram

FLASHIAP_PrepareSectorForWrite

FLASHIAP_CopyRamToFlash

5 Conclusion
This document describes the hardware design and software architecture (top level design) of LPC54114_Dongle in the BLE Audio
System. This document can be a reference for users to build their own demo.

NXP Semiconductors
Conclusion

LPC54114 USB Dongle with NxH3670, Rev. 0, September 2019
Application Note 29 / 30

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to
use NXP products. There are no express or implied copyright licenses granted hereunder to
design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for
any particular purpose, nor does NXP assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in NXP data
sheets and/or specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer's technical experts. NXP does not convey any license under
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and
conditions of sale, which can be found at the following address: nxp.com/
SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior,
ColdFire, ColdFire+, C‑Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,
SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,
BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,
TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the
property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan,
big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali,
Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK,
ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered
trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related
technology may be protected by any or all of patents, copyrights, designs and trade secrets. All
rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The
Power Architecture and Power.org word marks and the Power and Power.org logos and related
marks are trademarks and service marks licensed by Power.org.

© NXP B.V. 2019. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: September 2019
Document identifier: AN12568

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	1.1 Overview
	1.2 Reference documents

	2 System overview
	2.1 Block diagram
	2.2 Software architecture of USB Dongle

	3 Components of USB Dongle
	3.1 LPC54114
	3.1.1 Host controller
	3.1.2 Clocks
	3.1.3 Pins connection information
	3.1.4 Schematic
	3.1.5 Pins configurations

	3.2 NxH3670
	3.2.1 Boot
	3.2.1.1 NxH3670UK bootloader
	3.2.1.2 Partition table
	3.2.1.3 NVM
	3.2.1.4 EEP
	3.2.1.4.1 Definition
	3.2.1.4.2 Downloading .EEF file to LPC54114

	3.2.1.5 NxH3670 host interface: SPI
	3.2.1.5.1 SPI bus
	3.2.1.5.2 SPI flow control

	3.2.1.6 Host Controller Interface (HCI)
	3.2.1.6.1 HCI command format
	3.2.1.6.2 HCI event format
	3.2.1.6.3 HCI command transfer
	3.2.1.6.4 HCI event transfer

	3.2.2 Handshake
	3.2.2.1 Logical signals
	3.2.2.2 Physical signals

	3.2.3 Start

	4 Porting guide and demo introduction
	4.1 Framework
	4.2 NxH
	4.3 USB
	4.4 Audio
	4.5 NVM

	5 Conclusion

